
A Human-Centered Dynamic Scheduling Architecture for Collaborative
Application∗

Andrea Pupa1, Wietse Van Dijk2 and Cristian Secchi1

Abstract— In collaborative robotic applications, human and
robot have to work together during a whole shift for executing
a sequence of jobs. The performance of the human robot
team can be enhanced by scheduling the right tasks to the
human and the robot. The scheduling should consider the task
execution constraints, the variability in the task execution by
the human, and the job quality of the human. Therefore, it
is necessary to dynamically schedule the assigned tasks. In
this paper, we propose a two-layered architecture for task
allocation and scheduling in a collaborative cell. Job quality
is explicitly considered during the allocation of the tasks and
over a sequence of jobs. The tasks are dynamically scheduled
based on the real time monitoring of the human’s activities.
The effectiveness of the proposed architecture is experimentally
validated.

I. INTRODUCTION

In recent years, industrial setting has been supported by
a constant increase in the use of collaborative robotics (see
e.g. [1], [2]).

The shift towards collaborative robotics can significantly
change the quality of the job for the human. In fact, collab-
orative robots can take over dull, heavy or dangerous tasks
making the life of the human easier. To ensure that the re-
distribution of tasks is favorable to the human, the job quality
aspect has to be taken into account when dividing tasks
between human and robot [3]. This process can be guided
by using job-quality metrics. The job quality framework, as
used by the OECD [4], is a multidimensional concept that
covers various topics. The part of job quality that concerns
the quality of the working environment (e.g. time pressure,
physical risks and work autonomy) is of specific interest for
human-robot collaboration. At an even lower level, aspects
of task load are governed by guidelines and regulations, for
example for lifting loads [5] and noise exposure [6].

In the industrial scenarios, collaborative cells are built in
order to enable the human and the robot to work together on
various jobs, each of which composed by a set of tasks. The
distribution of task determines the load to which the human
is subjected ([3], [7]). Additionally, the distribution of tasks
determines influences the fluency, which in turn is strongly
related to job quality aspects [8].

A lot of research has been done in the multi-agent task
allocation problem in the industrial cases (see e.g. [9], [10],

∗ This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 818087
(ROSSINI).

1 Andrea Pupa and Cristian Secchi are with the Department of Science
and Method of Engineering, University of Modena and Reggio Emilia, Italy.
E-mail: {andrea.pupa, cristian.secchi}@unimore.it

2 Wietse Van Dijk is with the Netherlands Organisation for applied sci-
entific research - TNO, Holland. E-mail: wietse.vandijk@tno.nl

[11]). In general, these solutions cannot be directly applied
in a human-robot collaboration (HRC) application, as they
consider the presence of homogeneous agents.

Task allocation for collaborative cells has been modeled
as a nonlinear optimization problem (see e.g. [12], [13],
[14], [15]) but the computational complexity of the problem
is often high and it does not explicitly allow to take into
account variable job-quality parameters. In [16] a two-level
feedforward optimization strategy for offline subtask alloca-
tion between human and robot is presented. This strategy is
integrated with a feedback procedure based on mutual trust to
re-allocate the subtasks online. In [17] the authors propose a
multi-criteria decision-making framework for task allocation
which generates a solution that best matches the criteria you
want to optimize. Moreover, in case of unexpected events, the
algorithm can be exploited for re-scheduling the remaining
tasks. In [18] a two-level framework for task assignment is
presented that dynamically handles task failures in a HRC
scenario. Nevertheless, job quality over several jobs is not
considered. Task assignment strategies for HRC assume that
both the human and the robot require a constant amount
of time to perform a task. This assumption may lead to
inefficiencies. In reality, the human does not always take
the same amount of time to accomplish the same task.
Several works that consider task rescheduling with a variable
human execution time are available in the literature (see
e.g. [19], [20]) but the operator and the robot are treated
as two separate entities and human-robot interaction and
communication is not considered.

In order to make the human-robot collaboration as natural
as possible, it is necessary to improve mutual awareness and
communication both at the task execution level and at the
task planning and scheduling level. Thus, it is important to
have a monitoring strategy that makes the scheduler aware
of the real duration of the tasks executed by the human and
about the job quality of the human. This strategy allows
the scheduler to adapt the assigned tasks improving the job
quality and the efficiency of the human-robot collaboration.
Moreover, both the human and the robot should be able
to communicate through the scheduler in order to improve
the collaboration and to make it as natural as possible. The
human, due to its expertise and experience, should be able to
decide to execute a task that was previously assigned to the
robot. While the robot should be able to assign a specific task
to the human, if some failure occurs (e.g. a robot tool broke).
All these decisions should be handled by the scheduler which
re-assigns the tasks accordingly.

In this paper we propose novel framework for task as-

ar
X

iv
:2

10
3.

01
83

1v
2

 [
cs

.R
O

]
 3

 M
ar

 2
02

1

mailto:andrea.pupa@unimore.it
mailto:cristian.secchi@unimore.it
mailto:wietse.vandijk@tno.nl

signment and scheduling for collaborative cells that is aware
about the activity of the human and that allows the human
and the robot to take decisions about the tasks they need to
execute. This framework intrinsically considers job quality
in the scheduling algorithm, in order to improve job quality
of human workers. The proposed framework is composed
by two layers. The first layer assigns, off-line, the tasks
within a job to either the human or the robot by providing a
nominal schedule. It considers the actual job quality indexes
and the dependencies between the tasks. The second layer,
the scheduler layer, reschedules the tasks considering the real
execution time of the human operator, if needed, and the
decisions taken online both by the human and the robot.

The main contributions of this paper are:
• A novel adaptive framework for task assignment and

scheduling that considers into account real execution
time, the job quality of the human, and the communi-
cation with human and robot for dynamic rescheduling

• A strategy for dynamic rescheduling that is effective
and computationally cheap, i.e. suitable for industrial
applications, and that allows human and robot to com-
municate their needs to the scheduler.

The paper is organized as follows: Sec. II presents the
task assignment and dynamic scheduling problem for a
collaborative cell. Sec. III presents the overall proposed
architecture. Sec. IV an optimization problem for solving
the task assignment and scheduling considering job quality
is proposed. Sec. V defines the quantitative job quality met-
rics and attractiveness factor for human-robot collaboration.
Sec. VI presents an algorithm that dynamically schedules
the tasks for the human and the robot. Sec. VII summarizes
the experimental validation of the proposed architecture.
Sec. VIII sums the conclusions and proposes future work.

II. PROBLEM STATEMENT

A collaborative industrial workspace is characterized by
the presence of two different agents, a human operator H
and a robot R, that must cooperate during a work shift
in order to perform S jobs (J1, . . . , JS). Each job consists
out of one or more tasks1 (T1j , . . . , TNj), each of which
is characterized by an intrinsic cost wAi and by a nominal
execution time tai, where a ∈ A = {H,R} represents the
agent that executes the task i. In the rest of the paper the
double index is removed for ease of notation and we refer
to the set of tasks (T1j , . . . , TNj

) as (T1, . . . , TN). The real
task execution time can differ from the nominal execution
time, due to uncertainties in the human behavior. Therefore,
the workspace is equipped with a monitoring unit that, for
each task Ti assigned to the human, estimates online the
real execution time. To achieve this, many solutions can be
found in literature, e.g. sequential interval networks [21],
interaction probabilistic movement primitives [22], Open-
Ended Dynamic Time Warping (OE-DTW) [23]. The output

1The choice of the specific technique for splitting a job into several tasks
is out of the scope of this paper. Several strategies are available in the
literature (see, e.g., [18] for assembly tasks.)

Fig. 1: The overall architecture. The blue blocks represent
the two layers. The yellow and the purple blocks symbolize
the strategies implemented to provide richer information to
the architecture. The red blocks represent the two agents.

from the monitoring unit is used to update all relevant
parameters over the entire work-shift.

The tasks composing a job may depend on each other,
i.e. there could be precedence constraints, and the execution
order must be considered when assigning tasks.

In this work, we aim at designing a task assignment and
dynamic scheduling architecture that:
• Builds optimal nominal task schedules for the human

and the robot, i.e. two task schedules such that, con-
sidering the nominal execution times, the precedence
constraints, and job quality metrics, minimizes the job
makespan, maximizing the parallelism between human
and robot (i.e. minimizes waiting time), and optimizing
the job quality for the human operator over the entire
work shift.

• Starting from the nominal task schedules, reschedules
both the human and the robot tasks according to the
real execution time detected by the monitoring unit and
the decisions taken by the human and the robot for task
swapping. The rescheduling aims at minimizing the job
makespan and improving the collaboration between the
two agents.

III. ARCHITECTURE

The proposed task assignment and dynamic scheduling
strategy is shown in Fig. 1, where two main layers can be
distinguished:

1) The Task Assignment Layer is responsible of gen-
erating initial nominal schedules for the robot and the
human, based on the maximum parallelism criterion,
taking into account precedence constraints and job
quality metrics over the entire work shift.

2) The Dynamic Scheduler Layer is responsible of
scheduling the tasks, considering the real execution
time and the requests coming from the human and from
the robot.

Once the Task Assignment layer computes the initial
nominal schedules, an estimation of the human job quality
parameters is performed. This estimation is based on the
nominal execution time tHi.

The resulting estimate represents the expected job quality
parameters if the behavior of the human was exactly as the
nominal one. To accommodate for (expected) deviations from
the nominal schedule, the estimated job quality parameters
are given as input to the Human Monitoring block, which
is responsible for supporting and improving the scheduling
procedure.

The Human Monitoring block aims to track the real
execution time of the human operator during the execution
of assigned tasks. The information about the real human
behavior is then leveraged to update the estimated param-
eters. Subsequently, the real parameters that come out of
the Human Monitoring block are used as input for the Task
Assignment layer when calculating the nominal schedules of
the new job. This feedback procedure allows to keep track
of the evolution of job quality throughout the entire work
shift, adapting each schedule accordingly.

The real execution time of the human is also exploited
by the Dynamic Scheduler, which aims to reschedule, in
real-time, the nominal tasks schedules. Frequently changing
the order of the tasks assigned to the human can lead to
confusion and poor efficiency of the human [24]. Thus, we
have chosen to focus the rescheduling strategy primarily
robot tasks. The list of tasks assigned to the human changes
only when required by the Communication Interface block,
namely when the robot cannot execute a task and a failure
occurs, and when the human decides to perform a task
instead of the robot. In all these cases, the changes in the
human schedule are necessary and minimal.

IV. TASK ASSIGNMENT

The role of the Task Assignment layer is to build, for
each job, the nominal task schedules for the human and
the robot, taking into account job quality and precedence
constraints. This relation of dependency between tasks can
be represented with a directed acyclic graph G = (T,E), as
shown in Fig 2a. Each vertex represents a task Ti while each
directed edge Eij means that the task Ti must be executed
before the task Tj . Some tasks could be independent of each
other, since there is not a path that goes from one task to the
other (e.g. T1 and T3). The graph can then be rearranged so
that all the parallel tasks are grouped together into several
sets called levels Ll, as shown in Fig. 2b. The choice of how
the tasks are assigned to each level has a large impact on the
schedules.

In this paper, both the problem of allocating the tasks to
each agent and the way in which the tasks are distributed
over the levels are addressed by solving the following multi-
objective Mixed Integer Linear Program:

(a) (b)

Fig. 2: Fig. 2a shows the directed acyclic graph of a Job
composed by seven tasks, while Fig. 2b shows the division
into four levels.

minx,cl

∑L
l=1

∑N
i=1(wRixRil+wHixHil)+

1
tA,max

∑L
l=1cl

subject to∑L
l=1(xRil + xHil) = 1 ∀i ∈ {1, . . . , N}∑N
i=1 taixail ≤ cl ∀l ∈ {1, . . . , L},∀a ∈ A∑
a∈A

∑L
l=1 l · xail <

∑
a∈A

∑L
l=1 l · xajl ∀i→ j

Km ≤ Km,max ∀m ∈ {1, . . . ,M}

Km,av ≤ Km,av,max ∀m ∈ {1, . . . ,M}

(1)
The terms wRi, wHi > 0 represent the weights for ex-

ecuting task Ti on behalf of the robot and of the human,
respectively. The Boolean variables xRil, xHil ∈ {0, 1}
are detecting whether Ti is assigned or not to the robot
or to the human, respectively, and at what level it must
be executed; x = (xR11, . . . , xRNL, xH11, . . . , xHNL) is
the vector containing all the decision variables. tai > 0
represents the nominal execution time of Ti on behalf of
agent a ∈ A and tA,max is the maximum task duration.
cl > 0 denotes the cycle time of the lth level and Km and
Km,av are quantitative parameters used to evaluate the mth

job quality metric, as detailed in Sec. V.
wRi and wHi are exploited for encoding the cost required

by each agent to perform the task (e.g electrical cost, tool
wear, or risk assessment). Very high weights are exploited
for communicating to the task assignment algorithm that an
agent is unsuitable for the execution of a task. Moreover, the
human weights are exploited also to embed and evaluate in
a quantitative way the job quality. The calculation method
of these costs is a design parameter (see e.g. [25], [26]).
In a general way we can define wRi = h(costs) and
wHi = g(costs, job quality).

The first constraint guarantees that each task is assigned
either to the robot or to the human. The second constraint
maximizes the parallelism between the human and the robot.
In fact, since all the terms in the quantity to minimize are
positive, the optimization problem would tend to choose
c =

∑L
i=1 cl as small as possible and the lower bound for

this sum is given by the third constraint and corresponds to
the maximum parallelization of the activities of the human
and of the robot. The third constraint ensures the respect of
the precedence relationship, since all the tasks that should
be executed before another are assigned to an upper level.
The last constraints impose that the job quality metrics for
the human operator will not violate the upper bounds.

The outcome of the optimization problem (1) are SH and
SR, the set of tasks that have to be executed by the human
and by the robot, respectively, and the level at which the task
must be executed. This generates the nominal schedules, i.e.
two ordered tuples SH and SR containing the tasks that have
to be sequentially executed by each agent in each level.

V. JOB QUALITY METRICS FOR HRC

Job quality is considered in the Task Assignment via two
mechanisms. The first mechanism ensures that various met-
rics related to job-quality do not exceed threshold values via
optimization constraints. The second mechanism considers
the overall attractiveness of the task-set that is assigned to
the human. The attractiveness of the task-set is made part of
the optimization objective.

Various metrics can be defined that describe a certain
task load, e.g. the weight that is lifted, or the noise that is
experienced during task execution. To monitor these metrics
each task is assigned a set of weights (ki1, . . . , kiM). The
metrics (K1, . . . ,KM) can be calculated using two different
generic representation of a job quality metric:
• summed weight:

Km = Km,0 +

L∑
l=1

N∑
i=1

(xHilkim) (2)

• average weight:

Km,av =
teKm,0 +

∑L
l=1

∑N
i=1(xHiltHikim)

tm + c
(3)

Where c =
∑L

l=1 cl is the cycle time. Typically, job-quality
metrics are calculated over a time span longer than the
execution of one task, tm is the elapsed time of the time
frame that is relevant for the metric, e.g. elapsed time since
the human started the work shift. Km,0 is the cumulative
costs from previous jobs within the time frame te. The set
of cumulative costs of each metric represents the job quality
metrics that come out from the Human Monitoring block
as shown in Fig. 1. It is worth noting that this cumulative
cost guarantees that all the desired job quality metrics are
estimated and constrained over the relevant time frames (tm)
and not just only over the single schedule.

Ensuring that pre-set thresholds on job-quality aspects are
not exceeded does not automatically assign the tasks that

are preferred by the human to the human. This aspect is
governed by a general attractiveness factor that is assigned
to each task. The attractiveness of the tasks is included in
the optimization problem (1), i.e. in the evaluation of wHI ,
so the scheduler tries to assign those tasks to the human, that
the human likes to perform the most.

VI. DYNAMIC SCHEDULER

Starting from the output of the Task Assignment, the goal
of the Dynamic Scheduler is to adapt online the two nominal
schedules SH and SR taking into account the uncertainty
of the human behavior. When two humans collaborate, their
natural synergy allows them to reach high team performance.
If one human gets slower, the other can compensate by
speeding up. Furthermore, more complex unexpected dif-
ficulties are handled by communication. Experienced team
members can exploit their knowledge to reorganize the work
or decide to take over a difficult task. Less experienced team
members can ask the expert member for some help when
problems occur. The dynamic scheduler aims at reproducing
this kind of behavior in human-robot collaboration in order
to create an effective and natural cooperation.

This is achieved exploiting two different strategies. Firstly,
the human operator is monitored in real time when perform-
ing the task in order to estimate the real execution time
and, if necessary, to reschedule the future activities of the
robot, reducing waiting time. Secondly, the communication
between the human and the robot is enabled, allowing the
two agents to take decisions about their activities through the
scheduler. In particular, the robot delegates a task it cannot
momentarily execute to the human. The human, instead,
can decide to execute the task that the robot is performing
(because, e.g., from its experience, it knows that the robot is
not executing the task properly or to speed up the workflow).
Moreover, the human can decide to re-assign some of its
tasks to the robot. The dynamic scheduler is implemented
according to the pseudo-code reported in Alg. 1.

The dynamic scheduler needs as input the nominal task
schedules SH and SR (Line 1). It firstly sets to false two
variables EndR and EndH , which identify if the respective
agent has concluded its task, and it initializes the job at
the first level (Lines 2-3). Subsequently, if applicable, the
algorithm assigns the first tasks of SR(l) and SH(l) to the
human and to the robot (Lines 4-7). At this point, it starts
two loops to check the end of the job (Line 8) and the
actual level (Line 9), respectively. Inside the second loop, the
scheduler first checks if the robot has performed all its tasks
in the actual level. If this is true, the robot is in idle, waiting
for the human to finish its task, and some tasks may be
rescheduled (Line 11), maximizing the parallelism between
the two agents. In the other cases the algorithm exploits the
function monitoR(TR) to check if the robot has finished
the assigned task (Line 13). The monitorR() function
can be implemented using standard procedures, available
for robotic applications (see e.g. [27]). If the robot cannot
succeed to execute TR (e.g. a timeout error), a delegate
message MR is communicated. Subsequently, the algorithm

Algorithm 1: DynamicScheduler()

1: Require: SH ,SR

2: EndR, EndH ← false
3: l← 1
4: if SR(l) 6= ∅ then TR ← SR(l, 1)
5: end if
6: if SH(l) 6= ∅ then TH ← SH(l, 1)
7: end if
8: while l ≤ L do
9: while (TR 6= ∅ and TH 6= ∅) do

10: if TR = ∅ then
11: SR ← reschedule(TH , SR)
12: else
13: EndR ←monitorR(TR)
14: end if
15: EndH ← checkEndH()
16: MH ← readH(), MR ← readR()
17: (EndH , EndR, SH , SR) =

communication(MH ,MR, SH , SR)
18: if EndH then TH ← next(TH , SH(l))
19: end if
20: if EndR then TR ← next(TR, SR(l))
21: end if
22: end while
23: l← l + 1
24: end while
25: updateJQ()

checks if the human has completed its task, e.g. exploiting
an HMI, and all the messages generated by the human
and the robot are considered for task swapping (Lines 17).
Afterwards, the algorithm checks if the two agents have
concluded their tasks and, if it is the case, assigns them the
next task in the level (Lines 18, 20). If no tasks are scheduled
in the actual level, the function next(T, S(l)) returns ∅.
When both TR and TH are empty, then the level is concluded
and the job moves on to the next one (Line 23). Finally, when
all the tasks have been performed, the job quality parameters
are updated through the function updateJQ() (Line 25) and
used as input for the Task Assignment of the next job.

The rescheduling algorithm is represented in Alg. 2. The

Algorithm 2: Reschedule()

1: Require: TH , SR

2: tres ←monitorH(TH)
3: if tres > tRi then
4: (pSR, fSR)← split(TR, SR)
5: fSr

R ← fill(fSR, tres − tRi)
6: SR ← concat(pSR.S

r
R, fSR/fS

r
R)

7: end if
8: return SR

algorithm requires as input the task TH is currently assigned
to the human and the current robot schedule SR (Line 1).

Fig. 3: Communication Layout. The dotted lines indicate
the “reassign” message coming from the human and the
consequent task scheduling. The dashed lines indicate the
“delegate” message coming from the human with the follow-
ing scheduling to the robot. Finally, the brown lines indicate
the “delegate” message communicated by the robot.

It exploits the human monitoring strategy to estimate the
remaining time tres for the accomplishment of TH (Line 2).
If tres is greater than the time necessary for the execution
of some tasks in SR, then these tasks may be executed in
parallel with TH and, therefore, the rescheduling procedure
starts (Line 3). First, the schedule SR is split into two sub-
lists: pSR contains all the robot assigned tasks in the actual
level while fSR contains all the tasks of the next levels,
which still need to be performed (Line 4). fSR is then used
to create another sub-list Sr

R, which contains all the tasks
that can be executed in the extra time available tres − tRi

and whose precedences have already been executed (Line 4).
Subsequently, SR(l) is updated by concatenating pSR, with
the list of the rescheduled tasks fSr

R (Line 6). Finally, the
new schedule SR is returned.

Several implementation of procedure monitorH() are
available in the literature as, e.g., [21], [22], [23].

During the execution of the job the human and the robot
can generate messages in order to communicate to the
Dynamic Scheduler the intention or need to swap their tasks.
A detailed representation of this communication layout is
shown in Fig. 3. In particular, the message MR sent by the
robot can be either empty or containing the value “delegate
TR” and it is generated by the monitorR function when
the robot cannot succeed in executing the assigned task.
The message MH can be either empty or it can assume
two values: “reassign Treas” or “delegate Tdel”. The first
message is generated when the human decides to execute
the task that the robot is executing (because, e.g., the robot
is not doing the assigned work properly or in the best way).
The second message is generated when the human decides to
delegate some tasks in SH to the robot. This message has an
argument, that specifies the task to be delegated. The human
can enter the messages through a proper, job dependent, input
interface. The messages generated by the human and by the
robot are handled by Alg. 3.

Algorithm 3: Communication()

1: Require: MH , MR, TR, SH ,SR

2: if MH = reassign(Treas) then
3: EndH ← true
4: if Treas = TR then
5: EndR ← true
6: SR ← push(Thome, SR)
7: end if
8: SR ← delete(Treas, SR)
9: SH ← push(Treas, SH)

10: else if MH = delegate(Tdel) and exRobot(Tdel) then
11: EndH ← true
12: SH ← delete(Tdel, SH)
13: SR ← push(Tdel, SR)
14: end if
15: if MR = delegate(TR) and exHuman(TR) then
16: EndR ← true
17: SR ← delete(TR, SR)
18: SR ← push(Thome, SR)
19: SH ← push(TR, SH)
20: end if
21: return EndH , EndR, SH , SR

The algorithm requires the messages generated by human
and robot MR and MH , the current schedules SR and SH

and the task TR currently assigned to the robot (Line 1).
The message MH is the first to be handled in order to
give priority to the decisions taken by the operator. If the
human decides to execute a task that was initially assigned
to robot, it is necessary to check if the robot already started
this task. If this is true, the robot task execution is aborted,
moving the robot in an home safe position. Treas is then
deleted from SR and pushed in the first position of the
human schedule (Lines 3-9). The human can also decide
to delegate a task Tdel ∈ SH . If Tdel is executable by the
robot, it is deleted from SH and transferred into the robot
schedule (Lines 10-13). The robot, instead, could detect that
it cannot fulfill the assigned task and, if the task is executable
by the human operator, TR is deleted from the robot schedule
and inserted in the schedule of the human, while a homing
mission Thome is added as the next task for the robot
(Lines 15-19). Finally the procedure returns the updated end
of task variables and schedules (Line 21). The procedures
exRobot and exHuman exploit prior information about the
job and the tasks (e.g. the weights wRi and wHi in (1)) to
detect if a task can be executed by the robot or by the human.

Swapping the tasks between the human and the robot
directly affects the job quality. Thus, it may happen that the
final job quality indices do not respect the constraint imposed
in the MILP problem (1). However, since the optimization
problem requires as input the real job quality parameters,
namely Km,0, the possible work overload for the operator
will be mitigated with subsequent task schedules. Another
possible way to ensure the optimum of the job quality is the
implementation of a function that checks if the task swap-

Fig. 4: Setup of the experiment. The two images show all
the equipment used during the experiments.

ping will violate the constraints and, if required, prevents
it. However the latter strategy is very conservative, as it
does not take into account the possibility of correcting the
job quality parameters in subsequent optimization problems.
Furthermore, at the communication level, the job quality
is treated as a soft constraint with respect to the need to
swap a task (e.g. the robot failing a task is a more critical
situation). For these reasons, in this paper it was decided not
to investigate the latter solution.

The Dynamic Scheduler is computationally cheap. The
heaviest part is represented by the fill() function inside the
Reschedule() algorithm (see Alg. 2, Line 4). This function,
in its worst implementation, has a linear complexity equal
to O(n+ l), i.e. when analyzing every single element of the
tuple with two for loops. Since the number of tasks and levels
in an industrial application is not that large, the algorithm is
reactive.

VII. EXPERIMENTS

The proposed two-layered framework has been experimen-
tally validated in a custom collaborative assembly work shift,
that has been set up only for evaluation purpose. During the
experiments, the human operator cooperated with a UR10e,
a 6-DoF collaborative robot. To monitor the human task exe-
cution we used a Kinect V2 RGB-D Camera with the official
APIs for the skeleton tracking and to evaluate the remaining
task time we implemented the OE-DTW algorithm, which
is available in literature (see [28]), to both operator wrists.
This algorithm returns the percentage completion of the task
%compl, comparing the actual time series with the reference
ones. This percentage was then exploited to estimate the
remaining time of the task as tresi = (1−%compl)tHi. For
the communication interface we used the computer keyboard
to send signal through a simple HMI. The complete setup
for the experiment is shown in Fig. 4.

All the software components were developed using ROS
Melodic Morenia. The optimization problem was imple-
mented using Python-MIP [29], a collection of Python tools
for the modeling and solution of Mixed-Integer Linear pro-
grams, and solved with Gurobi solver [30]. The UR10e is
position controlled using the ROS interface which accepts
a desired final position while the overall trajectories are

TABLE I: Tasks Description

Task Index Description Job

1 Pick&Place square shape. J1, J2

2 Pick&Place U shape. J1, J2

3 Pick&Place circular shape. J1, J2

4 Pick&Place cross shape. J1, J2

5 Pick&Place weight. J1, J2

6 Pick&Place weight. J1, J2

7 Packaging USB key. J1

8 Packaging USB key. J1

9 Packaging USB key. J1

TABLE II: Task Assignment Data

Task
Index

wRi tRi wHi tHi ki1 i → j

1 0.1 12 0.4 15 0 -

2 0.1 12 0.4 15 0 -

3 0.1 12 0.4 15 0 1, 2

4 0.1 12 0.4 15 0 1, 2

5 0.5 25 0.8 10 9 -

6 0.5 25 0.8 10 9 -

7 1000 - 0.4 25 0 -

8 1000 - 0.4 25 0 -

9 1000 - 0.4 25 0 -

directly generated by the low level controller.
The work shift was composed by two jobs divided into

multiple tasks. These are listed in Tab. I.
In the experiments we considered the average weight the

human has to lift during the execution of the job K1,av

as a job quality metric, with its respective upper bound
K1,av,max = 1.1.

The other inputs required by the Task Assignment Layer
(see Sec. IV) are shown in Tab. II. The nominal durations
were estimated by computing the average value of multiple
measurements, while the intrinsic costs were calculated with
the following equations:

wRi = 0.7DRi + 1000(1− capabilityi) (4)
wHi = ui (5)

where DRi represents the distance that the robot has to
perform during the execution of the task Ti and capabilityi
is a Boolean variable that indicates if the robot is capable of
perform the task, e.g. the robot is not able to execute tasks
T7, T8, T9. ui is the attractiveness factor for the human in
executing the task Ti and it was defined using our experience
and knowledge in the work. ki1 are defined taking into
account the weight of the objects, i.e. holding an USB stick
or a shape does not affect the analyzed job quality metric.
The only precendence constraints are related to the shapes
and they are necessary to avoid the robot making a wrong

pick with the magnets.
When the work shift starts. the job J1 must be executed

and the Task Assignment layer is initialized with the cumu-
lative cost K1,0 = 0. The optimization problem is solved in
100ms and the schedule is composed by the following two
tuples:
• SH = {[7, 8, 5], [9]}
• SR = {[3, 4, 6], [1, 2]}

with an estimated job quality metric equals to:

K1,av =
tH5k15

c
= 1.1 (6)

Starting from the output of the Task Assignment Layer,
the Dynamic Scheduler was then initialized and the two
agents began to perform the collaborative job. A video of
the experiments can be found in the supplementary material.
The first part of the video is dedicated to the execution of the
“nominal schedule” of the job J1, i.e. the two agents perform
exactly the assigned tasks. When the robot concludes all the
tasks of the first level, the Dynamic Scheduler exploits the
information coming from the OE-DTW to reschedule some
tasks (see Alg. 2, Line 3 – 6). Since the monitoring algorithm
returns an estimated remaining time tres > tR1, the robot can
anticipate the task T1 in the first level, instead of waiting for
the level to finish as scheduled. This procedure is executed
in 4ms.

Once J1 is concluded the real execution time tH5 = 15 s
and the real duty cycle c = 79 s are exploited to calculate
the real job quality metric K1,av = 1.7. The real job quality
metric is then used as input for the assignment procedure of
the next job J2. The new optimization problem is solved in
90ms and the resulting schedules are:
• SH = {[3], [1, 2]}
• SR = {[4], [5, 6]}
It is worth noting that thanks to the job quality constraint

no tasks affecting the weight metric are assigned to the
human and the new estimated job quality metric is below
the upper bound:

K1,av =
Km,0

te + c
= 0.96 ≤ 1.1 (7)

The second part of the video shows the execution of J2.
The communication strategy is then exploited. The work

shift is reinitialized and the operator starts to execute the
nominal schedule of the job J1. After concluding T7 and T8

he sends a message “delegate T5” to the Dynamic Scheduler
and the robot starts to execute this task instead of the human.
At the end of the schedule, the human asks to the Dynamic
Scheduler to reassign the task T2, and he performs that task
instead of the robot. Since the human did not perform any
task that affects the weight metric, the cumulative cost for
the assignment of the J2 is K1,0 = 0. For this reason, the
output of the Task Assignment for J2 is:
• SH = {[], [6]}
• SR = {[3, 4], [1, 2, 5]}

with an estimated weight metric K1 = 1. This solution is
obtained in 100ms. It is worth noting that c = 90 s this is

due to the fact that the Task Assignment schedules a pause
before starting the execution of the second level. This pause
is necessary to obtain an admissible value for the weight
metric.

In order to demonstrate the effectiveness of the archi-
tecture, J1 is performed without rescheduling the tasks.
As happened before, while the human performs its tasks
the robot concludes the first level as planned. Since the
rescheduling is not active, the robot stops, waiting for the
human to conclude the first level of the schedule. After
the human executes T5, the schedule passes to the second
level and two agents resume the expected behavior. As
expected, the trial without the rescheduling takes more time
(c = 85 s). Moreover, a great improvement can be seen in
the robot idle times: TR,idle = 12 s with our framework and
TR,idle = 20 s without using the rescheduling procedure.

VIII. CONCLUSIONS

In this paper we have proposed a two layer architecture
for dynamic task assignment and scheduling for collabora-
tive application. Job quality has been explicitly considered.
Rescheduling is performed considering real-time monitoring
of the operator’s activities and the human robot commu-
nication. The framework has been tested in a a custom
HRC assembly scenario and the results seem good, since
the expectations have been satisfied.

Future work aims at validating the proposed architecture
in an industrial scenario, where a real shift is considered
and a user study is implemented. This will lead to a further
validation of the architecture potential. Moreover, the HMI
could be substituted with a different communication system
that makes the message exchange simpler and more intuitive.
Finally, how the job quality is affected by the rescheduling
and the communication system could be analyzed, improving
even more the well-being of the human operator in HRC.

REFERENCES

[1] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot
collaboration in industrial settings: Safety, intuitive interfaces and
applications,” Mechatronics, vol. 55, pp. 248–266, 2018.

[2] A. Bauer, D. Wollherr, and M. Buss, “Human–robot collaboration: a
survey,” International Journal of Humanoid Robotics, vol. 5, no. 01,
pp. 47–66, 2008.

[3] Q. Pham, R. Madhavan, L. Righetti, W. Smart, and R. Chatila,
“The impact of robotics and automation on working conditions and
employment,” IEEE Robotics & Automation Magazine, vol. 25, no. 2,
pp. 126–128, 2018.

[4] Organisation for Economic Cooperation and Development, “Oecd
employment and labour market statistics,” 2020. [Online]. Available:
https://doi.org/10.1787/64b508c2-en

[5] NIOSH, Work practices guide for manual lifting. Cincinnati, Ohio:
US Department of Health and Human Services, Public Health Service,
CDC, 1981, no. 81-122.

[6] Council of European Union, “Directive 2003/10/ec,” 2003.
[Online]. Available: https://eur-lex.europa.eu/legal-content/EN/ALL/
?uri=CELEX%3A32003L0010

[7] F. Wixted and L. O’Sullivan, “The effect of automated manufacturing
environments on employee health,” Irish Ergonomics Society, p. 80,
2014.

[8] G. Hoffman, “Evaluating fluency in human–robot collaboration,” IEEE
Transactions on Human-Machine Systems, vol. 49, no. 3, pp. 209–218,
2019.

[9] C. Blum and C. Miralles, “On solving the assembly line worker
assignment and balancing problem via beam search,” Computers &
Operations Research, vol. 38, no. 1, pp. 328–339, 2011.

[10] K. Xu, R. Fei, and D. He, “A tabu-search algorithm for scheduling
jobs with precedence constraints on parallel machines,” in 2018 13th
IEEE Conference on Industrial Electronics and Applications (ICIEA).
IEEE, 2018, pp. 2774–2781.

[11] L. Sabattini, V. Digani, M. Lucchi, C. Secchi, and C. Fantuzzi, “Mis-
sion assignment for multi-vehicle systems in industrial environments,”
IFAC-PapersOnLine, vol. 48, no. 19, pp. 268–273, 2015.

[12] G. Michalos, J. Spiliotopoulos, S. Makris, and G. Chryssolouris, “A
method for planning human robot shared tasks,” CIRP journal of
manufacturing science and technology, vol. 22, pp. 76–90, 2018.

[13] K. Li, Q. Liu, W. Xu, J. Liu, Z. Zhou, and H. Feng, “Sequence
planning considering human fatigue for human-robot collaboration in
disassembly,” Procedia CIRP, vol. 83, pp. 95–104, 2019.

[14] A. Ayough, M. Zandieh, and F. Farhadi, “Balancing, sequencing, and
job rotation scheduling of a u-shaped lean cell with dynamic operator
performance,” Computers & Industrial Engineering, p. 106363, 2020.

[15] K. Bogner, U. Pferschy, R. Unterberger, and H. Zeiner, “Optimised
scheduling in human–robot collaboration–a use case in the assembly of
printed circuit boards,” International Journal of Production Research,
vol. 56, no. 16, pp. 5522–5540, 2018.

[16] S. M. Rahman and Y. Wang, “Mutual trust-based subtask allocation
for human–robot collaboration in flexible lightweight assembly in
manufacturing,” Mechatronics, vol. 54, pp. 94–109, 2018.

[17] N. Nikolakis, N. Kousi, G. Michalos, and S. Makris, “Dynamic
scheduling of shared human-robot manufacturing operations,” Proce-
dia CIRP, vol. 72, pp. 9–14, 2018.

[18] L. Johannsmeier and S. Haddadin, “A hierarchical human-robot
interaction-planning framework for task allocation in collaborative
industrial assembly processes,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 41–48, 2016.

[19] P. Lou, Q. Liu, Z. Zhou, H. Wang, and S. X. Sun, “Multi-agent-
based proactive–reactive scheduling for a job shop,” The International
Journal of Advanced Manufacturing Technology, vol. 59, no. 1-4, pp.
311–324, 2012.

[20] A. Casalino, A. M. Zanchettin, L. Piroddi, and P. Rocco, “Optimal
scheduling of human-robot collaborative assembly operations with
time petri nets,” IEEE Transactions on Automation Science and
Engineering, 2019.

[21] N. N. Vo and A. F. Bobick, “From stochastic grammar to bayes
network: Probabilistic parsing of complex activity,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2014, pp. 2641–2648.

[22] G. Maeda, M. Ewerton, G. Neumann, R. Lioutikov, and J. Peters,
“Phase estimation for fast action recognition and trajectory generation
in human–robot collaboration,” The International Journal of Robotics
Research, vol. 36, no. 13-14, pp. 1579–1594, 2017.

[23] R. Maderna, P. Lanfredini, A. M. Zanchettin, and P. Rocco, “Real-time
monitoring of human task advancement,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2019). IEEE,
2019, pp. 433–440.

[24] S. P. Marshall, “The index of cognitive activity: Measuring cognitive
workload,” in Proceedings of the IEEE 7th conference on Human
Factors and Power Plants. IEEE, 2002, pp. 7–7.

[25] E. Lamon, A. De Franco, L. Peternel, and A. Ajoudani, “A capability-
aware role allocation approach to industrial assembly tasks,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3378–3385, 2019.

[26] Z. Liu, X. Wang, Y. Cai, W. Xu, Q. Liu, Z. Zhou, and D. T. Pham,
“Dynamic risk assessment and active response strategy for industrial
human-robot collaboration,” Computers & Industrial Engineering, vol.
141, p. 106302, 2020.

[27] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics
and Autonomous Systems, vol. 53, no. 2, pp. 73–88, 2005.

[28] P. Tormene, T. Giorgino, S. Quaglini, and M. Stefanelli, “Matching
incomplete time series with dynamic time warping: an algorithm and
an application to post-stroke rehabilitation,” Artificial intelligence in
medicine, vol. 45, no. 1, pp. 11–34, 2009.

[29] H. G. Santos and T. A. Toffolo, “Python-mip,” 2020. [Online].
Available: https://www.python-mip.com/

[30] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020.
[Online]. Available: http://www.gurobi.com

https://doi.org/10.1787/64b508c2-en
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32003L0010
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32003L0010
https://www.python-mip.com/
http://www.gurobi.com

	I Introduction
	II Problem Statement
	III Architecture
	IV Task Assignment
	V Job Quality Metrics for HRC
	VI Dynamic Scheduler
	VII Experiments
	VIII Conclusions
	References

