
A Safety-Aware Kinodynamic Architecture for Human-Robot
Collaboration∗

Andrea Pupa1, Mohammad Arrfou2, Gildo Andreoni2 and Cristian Secchi1

Abstract— The new paradigm of human-robot collaboration
has led to the creation of shared work environments in which
humans and robots work in close contact with each other. Con-
sequently, the safety regulations have been updated addressing
these new scenarios. The mere application of these regulations
may lead to a very inefficient behavior of the robot. In order
to preserve safety for the human operators and allow the robot
to reach a desired configuration in a safe and efficient way,
a two layers architecture for trajectory planning and scaling
is proposed. The first layer calculates the nominal trajectory
and continuously adapts it based on the human behavior. The
second layer, which explicitly considers the safety regulations,
scales the robot velocity and requests for a new trajectory if the
robot speed drops. The proposed architecture is experimentally
validated on a Pilz PRBT manipulator.

I. INTRODUCTION

The introduction and diffusion of collaborative robotics
within the industrial environments has allowed to create
shared workspace where humans and robots can work
closely. While this new paradigm has led to an increase
in the flexibility of production lines, the lack of physical
barriers requires to pay more attention on how to guarantee
human safety. Therefore, the robot safety standards have been
updated to address this new collaborative scenarios [1]. In
particular, the ISO 10218-1 and the ISO 10218-2 [2], [3]
standards classify the collaborative modes in four differ-
ent categories: safety-rated monitored stop (SMS), hand
guiding (HG), speed and separation monitoring (SSM) and
power and force limiting (PFL). Additionally, the technical
specification ISO/TS 15066 [4] provides further information
to assess the risk for each collaboration mode. In case
of applications where industrial robots are used, the SSM
is typically adopted. In this collaborative mode the speed
of the robot is reduced according to the relative human-
robot velocity and position. However, this approach is overly
conservative, since the robot speed should not be limited if
its motion is directed away from the human. Moreover, by
monitoring the human speed the performance of the robot can
be further increased without violating the safety constraints.

Different approaches were presented in the literature to
deal with human safety and collision avoidance in a human-

∗This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 818087
(ROSSINI).

1 Andrea Pupa and Cristian Secchi are with the Department of Science
and Method of Engineering, University of Modena and Reggio Emilia, Italy.
E-mail: {andrea.pupa, cristian.secchi}@unimore.it

2 Mohammad Arrfou and Gildo Andreoni are with
Datalogic S.p.A., Italy. E-mail: {mohammad.arrfou,
gildo.andreoni}@datalogic.com

robot collaboration (HRC) scenario. In [5] the authors
propose a real-time solution to evaluate the future human
occupancy and scale the robot speed accordingly, ensuring
safety. The idea is to use a 3D camera and a simple human
kinematic model to predict the future human occupancy. In
[6] an optimization which treats safety as an hard constraint
to be satisfied is presented. This strategy leads to obtain a
proportional reduction of the speed, with a consequent higher
productivity, while ensuring safety. In [7] the authors present
a safety framework for collaborative tasks where multiple
robots have to share the workspace with human operators.
The idea is to scale the velocity preventing that a safety index
falls below a certain value. When the scaling procedure is
not enough, an emergency stop is applied.

Reducing the speed of the robot is not always the best
solution, especially when the workspace conditions allow
the robot to modify the pre-planned path. In [8] the authors
exploit the concept of static and kinetostatic danger field
on a mobile robot in order to prevent collision with human
operators in a tire workshop. In [9] the concept of potential
field around the whole robot body is used to generate
collision-free trajectory. The entire workspace is surrounded
by multiple depth sensors that track both dynamic and static
object. In [10] authors implement virtual fixtures, which
combine attractive and repulsive potential field, in a tele-
operated environment. Even if these methods are effective in
guaranteeing safety requirements, potential fields can easily
cause the system to be stuck in local minima, compromising
the task execution.

For this reason, optimization-based algorithms have been
exploited to achieve a collision free behavior by applying the
minimum correction to the desired path. Safety is embedded
through the constraints in the optimization problem. In [11]
an optimization problem is solved in real-time in order to
force the robot to stay inside a safe set, evaluating the
variation of a safety index. In [12], the authors propose
an optimization-based control algorithm that explicitly con-
siders safety in order to avoid the human operator while
trying to preserve the desired path. Their strategy exploits
the use of control barrier functions [13] around the robot
body to maintain a collision-free trajectory while fulfilling
the ISO/TS 15066.

Adopting the optimal behavior to avoid collision in highly
dynamic environments could be computationally challeng-
ing, especially in a real industrial scenario where the num-
ber of obstacles to be considered is very high. In [14],
[15] the authors use kinodynamic rapidly-exploring random
tree (RRT) to plan collision free trajectory under kinody-

ar
X

iv
:2

10
3.

01
81

8v
1 

 [
cs

.R
O

] 
 2

 M
ar

 2
02

1

mailto:andrea.pupa@unimore.it
mailto:cristian.secchi@unimore.it
mailto:mohammad.arrfou@datalogic.com.it
mailto:gildo.andreoni@datalogic.com


namic constraints. However, these solutions are only suitable
for constraints that do not change during the execution of the
path, while the safety kinodynamic constraints change in real
time based on human behavior.

Other solutions, like [16], propose to ensure safety by
making the robot behave like a passively compliant system
during the execution of a task. In spite of that, these
approaches treat the human operator as an external disturb
for the system, without exploiting a human tracking strategy.

In this paper we propose a novel framework for trajectory
planning and velocity scaling for HRC scenario that is aware
of the highly dynamic of the environment and ensures safety
for the human operator by explicitly considering safety regu-
lations. The proposed framework is composed by two layers.
Given a desired configuration to reach, a trajectory planner
layer computes and adapts online the trajectory that the robot
has to follow. The trajectory scaling layer, according to the
safety constraints imposed by the safety standards, scales
the robot velocity ensuring safety for the human operator.
Moreover, in order to avoid drastic drops of the robot velocity
with consequent poorly efficient robot behaviors, mutual
communication between the two layers is enabled. When
required, the trajectory scaling can request for a replan of
a new trajectory, increasing the robot performances.

The main contributions of this paper are:
• A novel adaptive framework for trajectory planning and

scaling that takes into account the high dynamicity of
the environment, adapting in real-time the trajectory.

• A strategy for trajectory scaling that is computationally
cheap, i.e. suitable for real industrial application, and
that explicitly considers the kindoynamic safety con-
straint.

• The overall architecture that integrates the trajectory
planning and scaling strategies in order to improve the
efficiency of the system.

The paper is organized as follows: in Sec. II the trajectory
planning and scaling problem is detailed while in Sec. III
the SSM collaborative mode is treated. In Sec. IV the
overall architecture is presented: in Sec. IV-A the trajectory
planning strategy is detailed, while Sec IV-B the trajectory
scaling problem considering safety constraints is presented.
Finally in Sec. V an experimental validation of the proposed
architecture is presented while in Sec. VI some conclusions
and future works are addressed.

II. PROBLEM STATEMENT

We consider a HRC application where a robot manip-
ulator with n joints has to move from an initial config-
uration q(ti) = qi ∈ Rn to a desired final configuration
q(tf ) = qf ∈ Rn in order to execute a task. The trajectory
q(t) ∈ Rn that the robot has to perform can be decomposed
with a path-velocity decomposition:

q(t) = q(s(t)) (1)

where s is the curvilinear abscissa that parametrizes the
geometrical path q(s). The variation of s represents the time
law of the desired path (i.e. the velocity profile).

Differentiating (1) we obtain:

q̇(t) = q′(s)ṡ (2)

where q′(s) is the vector tangent to the desired path, while
ṡ constitutes the magnitude of the joint velocity.

The trajectory q(t) is considerate feasible and collision-
free when:

d(σri(q̄), σHj) ≥ dmin ∀i ∈ {1, . . . , n},∀q̄ ∈ q(t),
∀j ∈ {1, . . . ,m}

(3)

where σri(q̄) is the line segment representing the i-th link
when the robot is in configuration q̄. σHj it the line segment
of the j-th human body link, e.g. the human arm, and
m is the number of the human body link. d(σri(q̄), σHj)
represents the distance between the two line segments and
dmin is the minimum admissible distance. For this reason,
the shared workspace is equipped with a monitoring system
that allows to track the human movements and estimate the
human speed. Several strategies to track the human body
are available in literature: skeleton tracking with multiple
cameras [17], placing markers on the human body [18],
machine learning techniques [19], to name a few.

In this work, we aim at designing a safety kinodynamic
architecture that:
• Computes a nominal trajectory that is always collision-

free, i.e. a trajectory that the robot can execute at
maximum speed. Exploiting the tracking of the human
movements, the planning strategy aims at preserving the
feasibility of the trajectory, replanning a new trajectory
when the actual trajectory becomes infeasible.

• Starting from the nominal trajectory, scales the robot
velocity according to the limits imposed by the ISO/TS
15066 standard. The scaling aims at maintaining safety
for the human operator taking into account both the
distance between human and robot and the velocity of
the human towards the robot.

III. SPEED AND SEPARATION MONITORING

In modern industrial applications of collaborative robotics,
the Speed and Separation Monitoring collaboration mode is
widely used. In this collaborative mode, the speed of the
robot is continuously adapted depending on the position
and velocity of the human operator into the collaborative
workspace. Typically the human velocity is not monitored
and the workspace is divided into three different areas based
on the distance between the human and the robot. This
scenario is represented in Fig. 1. The robot is allowed to
operate at full speed when the human is in the green area, at
reduced speed when the human is in the yellow area and it
stops when the human is in the red area. The ISO/TS 15066
provides the guidelines for calculating the sizes of these
areas, namely the minimum protective separation distance
Sp, considering also the relative speed between the robot
and the human operator. Sp can be computed as:

Sp(t0) = Sh + Sr + Ss + C + Zd + Zr (4)



Fig. 1. Representation of different safety zones with SSM collaboration
mode.

Sp is the protective separation distance at time t0, while t0 is
the current time. Sh represents the contribution to the protec-
tive separation distance due to the operator’s movements, Sr
is the one derived from the robot reaction time and Ss is the
contribution caused by the robot stopping time. C represents
the intrusion distance, i.e. the distance that a part of the body
can intrude into the sensing field before it is detected. Zd and
Zr are the position uncertainties of the human operator inside
the workspace and of the robot system respectively.

The first terms of (4) can be expressed as:

Sh =

∫ t0+Ts+Tr

t0

vh(t) dt (5)

Sr =

∫ t0+Tr

t0

vr(t) dt (6)

Ss =

∫ t0+Ts+Tr

t0+Tr

vs(t) dt (7)

where Ts and Tr represents the robot stopping time and the
robot reaction time respectively. vh is the directed speed of
the human operator towards the robot, vr is the directed
speed of the robot towards the human operator and vs is
the speed of the robot in the course of stopping.

Under the assumptions that the velocity of the robot is
constant during the robot reaction time, that the acceleration
remains constant during the stopping phase and that the
dynamics of the human operator is slower than the robot
dynamics, which is true in the case of a generic HRC
application, the equations (5) – (7) can be approximated as
follow:

Sh = vh(t0)(Ts + Tr) (8)

Sr = vr(t0)Tr (9)

Ss = vr(t0)Ts + amax
T 2
s

2
(10)

Fig. 2. The overall architecture. The blue blocks represent the two layers.
The yellow blocks, instead, symbolize the strategies implemented to provide
richer information to the layers. The red block represents the agent.
The black lines symbolize the data exchange, while the red one constitutes
the signal that request for a replan of a new trajectory.

Substituting (8) – (10) in (4), it is possible to obtain an
upper bound robot velocity:

vrmax(t0) =
Sp(t0)− vh(t0)(Ts + Tr)− C − Zd − Zr

Ts + Tr

− amaxT
2
s

2(Ts + Tr)
(11)

The equation (11) is the safety constraint imposed by the
ISO/TS 15066, i.e. it expresses the maximum speed allowed
to the robot in the direction of the human operator.

IV. SAFETY KINODYNAMIC ARCHITECTURE

The proposed dynamic trajectory planning and scaling
strategy can be represented by the architecture in Fig. 2,
where two main layers can be distinguished:

1) The trajectory planning layer. It is responsible of
generating the initial nominal trajectory that the robot
can execute at maximum speed, i.e. it considers only
the robot limits. Subsequently, it continuously adapts
this trajectory exploiting the human tracking informa-
tion.

2) The trajectory scaling layer. It is responsible of scal-
ing the robot velocity along the planned path, explicitly
taking into account the velocity limits imposed by the
safety constraints.

Once the trajectory planning computes the initial nominal
trajectory, it sends it to the trajectory scaling and it remains
active until the robot reaches the desired final configuration
qf . The trajectory planning layers does not take into account
the safety regulation, i.e. it computes a trajectory that the
robot could ideally execute at maximum speed.

The trajectory scaling firstly applies a path-velocity de-
composition to the desired trajectory as shown in (1) and
(2). Subsequently, it computes online the optimal scaled
velocities in order to satisfy the constraint imposed by
ISO/TS 15066 (11).



During the execution of the motion, mutual communi-
cation between the two layers is enabled. The trajectory
planning exploits the human tracking information and replans
a new trajectory when the previous one becomes infeasible,
as explained in Sec. IV-A. The trajectory scaling immediately
parameterizes the new trajectory and starts following the
new path. At each iteration, it returns to the trajectory
planning the actual state of the trajectory. Moreover, when
the scaling factor decreases too much, the trajectory scaling
sends a signal to the trajectory planning requesting for a
new trajectory to be planned, as it is becoming inefficient,
see Sec. IV-B.

It is worth noting that during the real-time execution the
two algorithms work in parallel, relying on the last available
data sent by the other algorithm. For an optimal behavior,
the scaling algorithm should work at a frequency at most
equal to that of the robot control.

A. Trajectory Planning

The role of this layer is to find a trajectory qd(t) for the
robot that is collision-free and that the robot can execute
at maximum speed. Since the human behavior is in general
unpredictable it is not possible to use a strategy that computes
offline an optimal trajectory, as in short time it could become
infeasible causing collisions between the human and the
robot. The trajectory planning aims at continuously main-
taining a collision-free trajectory, adapting it online when
required.

The trajectory planning is implemented according to the
pseudo-code reported in Alg. 1.

Algorithm 1 TrajcetoryPlanning()
1: Require: qi, qf , n
2: qd(·)← plan(qi, qf )
3: send(qd(·))
4: qc ← qi
5: while qc 6= qf do
6: h← horizon(qc, n)
7: for i = 1 : n do
8: if not feasible(h(i)) then
9: qd(·)← replan(qd(·), qd(h(i− 1)), qf )

10: break
11: end if
12: end for
13: if β then
14: qd(·)← replan(qd(·), qc, qf )
15: end if
16: update qc()
17: end while

The trajectory planning needs as input the initial and the
final configuration, respectively qi and qf , and the length of
the horizon trajectory that will be checked n (Line 1). It
immediately plans the maximum speed trajectory qd(·) that
the robot could perform (Line 2). The function plan can be
implemented using different strategies available for robotic
applications (see e.g. [20], [21], [22]). Subsequently it sends

the trajectory to the trajectory scaling layer (Line 3) and it
sets the current trajectory state qc equal to the initial configu-
ration qi (Line 4). From this point the algorithm starts to loop
until the entire trajectory has been executed (Line 5). In the
loop, the dynamic planner first creates the horizon h starting
from the actual state (Line 6). This horizon represents the
set of the future configuration that are analyzed to check
if the trajectory is still feasible (Line 7 – 8). In case an
infeasible configuration is found a new feasible trajectory is
planned through the function replan (Line 9). The replan
function is responsible of planning a new trajectory that goes
from a desired configuration, in this case the last feasible
one q(h(i − 1)), to the final goal. Moreover, the replan
function merges the new trajectory with the previous one
and sends the resulting trajectory to the trajectory scaling.
Subsequently, the dynamic planning algorithm reads if there
is a request to replan a new trajectory due to the inefficiency
of the current one, i.e. β is equal to one (Line 13). This
request is given by trajectory scaling layer, as described in
Sec. IV-B. If there is the request, a new trajectory starting
from the actual configuration is computed (Line 14). Lastly,
the actual configuration is updated exploiting the information
coming from the trajectory scaling in (15) (Line 16).

The replan algorithm is presented in Alg. 2.

Algorithm 2 replan()
1: Require: qd(·), qrp, qf
2: qnew(·)← plan(qrp, qf )
3: qd(·)←merge(qd(·), qnew(·))
4: send(qd(·))
5: return(qd(·))

The algorithm takes as input the actual planned trajectory
qd(·), the starting configuration of the new trajectory qrp
and the final desired configuration qf (Line 1). It firstly
plan a new trajectory qnew(·) that goes from the starting
configuration of the new trajectory qrp to the desired goal
qf (Line 2). The new trajectory is then merged with the old
one (Line 3). This merging procedure replaces the part of the
old trajectory from qrp to qf with the new trajectory. Lastly,
the updated trajectory qd(·) is sent to the trajectory scaling
(Line 4) and returned to the dynamic planner (Line 5).

B. Trajectory Scaling

Starting from the output of the dynamic planner, the goal
of the trajectory scaling is to regulate the robot velocity
without violating the safety constraint expressed in (11).
When a human and a robot cooperate the environment could
be highly dynamic, for this reason the robot must follow
exactly the same path coming from the upper layer, since a
deviation from the planned path could cause a collision. The
trajectory scaling aims at scaling only the magnitude of the
velocity ṡ, assuring that the executed path is collision-free.

This is achieved in two steps. Firstly, by applying the path-
velocity decomposition as shown in (1) – (2). Secondly, by



solving the following optimization problem:

min− α

subject to

Jri(q)q
′
d(s)ṡα ≤ Vmax ∀i ∈ {1, . . . , n}

q̇min ≤ q′d(s)ṡα ≤ q̇max

q̈min ≤ q′d(s)ṡα−q̇
Tr

≤ q̈max

0 ≤ α ≤ 1

(12)

α ∈
[
0, 1
]

is the optimization variable and represents the
scaling factor. Jri(q) ∈ R1×n is a modified jacobian that
takes into account only the scalar velocity towards the
human operator of the i-th link. This modified version of
the jacobian is required as the velocity constraint imposed
by the ISO/TS 15066 (11) limits only the velocity that
reduce the human-robot distance, i.e. the velocity towards
the human. Vmax ∈ Rn is a vector whose each component is
the velocity limit imposed by the ISO/TS 15066. q̇min ∈ Rn
and q̇max ∈ Rn are the joint velocity lower bounds and the
joint velocity upper bounds, respectively. While q̈min ∈ Rn
and q̈max ∈ Rn are the acceleration limits. q̇ ∈ Rn is the
actual robot velocity and Tr is the robot execution time.

The modified jacobian Jri(q) is expressed as:

Jri(q) = ~nTi
[
Ji(q) 0̄

]
(13)

where ~ni = {nxi
, nyi , nzi , 0, 0, 0} is the versor representing

the direction that goes from the i-th robot link to the
human.The method used to compute this versor is a design
parameter, e.g. it can be found representing both the robot
and the human links as capsules and computing the minimum
distance [23]. Ji(q) ∈ R6×i is the i-th jacobian, i.e. the
jacobian matrix that relates the firsts i joint velocity to the
linear and angular velocity of the i-th link, and 0̄ ∈ R6×(n−i)

is a matrix with all zero elements.
The optimization problem (12) is a convex problem and

computationally cheap, since the only factor that affects
the convergence is the problem dimension, i.e. the number
of joints and links. Thanks to its convexity, the solution
obtained by the solver is always the global minimum of the
cost function, i.e. the maximum admissible scaling factor.
Moreover the problem has always a feasible solution. When
the human operator is very far from the robot, the robot is
allowed to move at the desired speed, i.e. α = 1 that is
the maximum speed as seen in Sec. IV-A. When the human
approaches the robot, the safety standards require to decrease
the velocity until, in the worst case, stopping the robot. This
is guaranteed by the solution α = 0.

The output of the trajectory scaling is then used to send
the desired velocity to the robot:

q̇ = q′d(s)ṡα (14)

Fig. 3. Setup of the experiments. The Pilz PRBT manipulator, which is
placed on a mobile robot, three of the six OptiTrack Primex cameras and a
wooden rod with the OptiTrack markers to track the right arm of the human
operator (red circle).

while the new robot configuration that is sent to the dynamic
planner (see Alg.1, Line 16) will be:

qc = qc + q′d(s)ṡαTr (15)

However, greatly reduce the robot velocity is a very
conservative strategy and it strictly decreases the overall
efficiency. Sometimes it could be more convenient for the
robot to move away from the human and execute another
trajectory. For this reason it has been implemented a step
signal that requests to the dynamic planner the replan of
new trajectory:

β =

{
1 α ≤ αmin
0 otherwise

(16)

where αmin is a predefined threshold and represents the
lower desired bound for the scaling factor.

When β is high a replan request is sent to the trajectory
planning and a new trajectory is planned (see Alg. 1,
Line 13).

V. EXPERIMENTS

The proposed two-layers framework has been experimen-
tally validated on a Pilz PRBT, a 6-DoF manipulator for
industrial application. We decided to exploit six OptiTrack
Primex cameras with the OptiTrack Motive software [24]
in order to track the movements of the human right arm.
A complete setup of the experiments is shown in Fig. 3.
All the software components were developed using ROS
Melodic Morenia meta-operating system and they ran on
a Intel(R) Core(TM) i7-10510U with Ubuntu 18.04. The
dynamic planner layer is based on the RRT-Connect al-
gorithm [25] and it is implemented using MoveIt Motion
Planning Framework [26]. The trajectory scaling layer ex-
ploits the C code generated by CVXGEN [27] to solve
the optimization problem (12). For simplicity, the modified
jacobian Jri is applied only to the end-effector and the versor
~ni is the versor of minimum distance between the i−th robot
link and the human operator arm. The minimum distance is



(a) Nominal Positions (b) Real Positions

(c) Nominal Velocities (d) Real Velocities

Fig. 4. First part of the experiment. Since the human operator is far from
the robot, the robot velocity is not scaled.

computed representing both the robot links and the human
arm as capsules (see [23]).

Concerning the frequencies, the communication with the
robot works at 50 Hz while the optimization problem con-
verges in 1 ms. The OptiTrack, instead, works at a frequency
of 240 Hz. Since the PRBT has not a real-time velocity ROS
interface, it has been decided to position control the robot
integrating the solution coming from (12) at 20 Hz.

In the experiment the robot has to go
continually from the start configuration
qs = {1.57,−0.4, 1.17, 0.0, 1.57, 0.0} to the final
configuration qg = {−1.57,−0.4, 1.17, 0.0, 1.57, 0.0},
and vice versa. A complete video of the demonstration is
attached. Initially, the human operator is very far from the
robot, i.e. he is in the green area of the SSM (see Fig. 1).
In this phase the robot is allowed to move at maximum
speed, following the nominal planned trajectory as shown
in Fig. 4. Subsequently, the human operator approaches
the robot causing the scaling of the trajectory, as shown in
Fig. 5c. This is due to the fact that, according to the safety
limit imposed by ISO/TS 15066 (11), the maximum speed
allowed towards the human operator decreases. The Fig. 5a
and 5b show the position and the velocity of the nearest
human point in the robot reference frame, respectively. As a
consequence of the approaching behavior, in the first phase
the x component increases and its velocity is positive. While
during the scaling, the velocity components are very low.
The Fig 5d demonstrates that the safety constraint is not
violated. In the graph only the velocity of the end-effector
towards the human vHee is shown. It is worth noting that the
robot slows down only in the first part of the trajectory, i.e.
from t = 1.1 sec to t = 1.95 sec. This is because the robot
is going towards the human operator. In the second part, i.e.
when it moves away, it goes at higher speed, restoring the
nominal behavior. As a matter of fact, at t = 1.95 sec the
scaling factor increases. A comparison between the planned
trajectory and the scaled one can be found in Fig 6.

In the next part of the experiment the human operator
hinders the robot, making the trajectory infeasible. The

(a) Human Position (b) Human Velocity

(c) Scaling Factor and Step Signal (d) Velocity Constraint on the EE

Fig. 5. Second part of the experiment. The human operator approaches
the robot and the velocity is scaled in order to fulfill the safety constraint.

(a) Nominal Positions (b) Real Positions

(c) Nominal Velocities (d) Real Velocities

Fig. 6. Second part of the experiment. As a consequence of the scaling,
the robot requires more time to complete the trajectory.

dynamic planner layer takes care of planning a new one,
avoiding the human operator, and the robot is able to reach
the desired configuration.

In the last part of the experiment, the human operator goes
very close to the robot, causing a drop of the scaling factor.
When α ≤ αmin = 0.2 the trajectory scaling layer sends a
the step signal β = 1 to the dynamic planner requesting for a
replan of a more efficient trajectory, as explained in Sec. IV.
The evolution of the scaling factor and the signal is shown in
Fig. 7. The replanning strategy is successful and the robot is
free to restore its behavior, completing the trajectory. Please
note that the robot remains stopped for about 1.5 sec. This
is due to the fact that the dynamic planner requires a certain
amount of time to find the more efficient trajectory.

In order to demonstrate the effectiveness of the architec-
ture, the same experiment is performed without sending the
replan request when the scaling factor is too small. In the
last part of the video is shown that, when the human operator
goes very close, the robot stops and it stays stuck until the
human operator leaves. It is worth noting that a comparison
on the execution times of the different strategies would not



Fig. 7. Last part of the experiment. The scaling factor drops lower the
threshold, the step signal is activated and the replanning request is sent.

be very interesting. This is because the solution without
the replan signal strictly depends on how long the human
operator stays close to the robot.

VI. CONCLUSIONS

In this paper we propose a two-layers framework for tra-
jectory planning and velocity scaling. Taking into account the
human motion, the first layer, i.e. the dynamic planner layer,
continuously checks if the trajectory becomes infeasible and
and reacts accordingly. The second layer, i.e. the trajectory
scaling layer, explicitly considers the safety standards and
scales the robot velocity in order to ensure safety. Moreover,
when the scaling factor decreases too much, the trajectory
scaling sends a signal to the dynamic planner requesting for
a replanning of a new trajectory. The experimental evaluation
shows the effectiveness of the framework both when the
human operator hinders the robot and when the two agents
get too close.

Future work aims to exploit the model predictive control
approach to generate smoother speed profiles. Furthermore,
considering a single direction from each robot link to the
human operator can be quite unreliable from a safety point
of view. For this reason a strategy that considers multiple
directions could be implemented. This, will be tested in a
real scenario with the presence of many obstacles, e.g. a
cluttered environment. Finally, the work could be extended
for use also in the case of mobile manipulators, exploiting
the redundancy to better improve the safety.

REFERENCES

[1] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot
collaboration in industrial settings: Safety, intuitive interfaces and
applications,” Mechatronics, vol. 55, pp. 248–266, 2018.

[2] “Robots and Robotic Devices–Safety Requirements for Industrial
Robots–Part 1: Robots,” International Organization for Standardiza-
tion, Geneva, CH, Standard, Jul. 2011.

[3] “Robots and Robotic Devices–Safety Requirements for Industrial
Robots–Part 2: Robot systems and integration,” International Orga-
nization for Standardization, Geneva, CH, Standard, Jul. 2011.

[4] “Robots and robotic devices–Collaborative robots,” International Or-
ganization for Standardization, Geneva, CH, Technical Specification,
Feb. 2016.

[5] M. Ragaglia, A. M. Zanchettin, and P. Rocco, “Safety-aware trajec-
tory scaling for human-robot collaboration with prediction of human
occupancy,” in 2015 International Conference on Advanced Robotics
(ICAR). IEEE, 2015, pp. 85–90.

[6] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias,
“Safety in human-robot collaborative manufacturing environments:
Metrics and control,” IEEE Transactions on Automation Science and
Engineering, vol. 13, no. 2, pp. 882–893, 2015.

[7] M. Lippi and A. Marino, “Human multi-robot safe interaction: A
trajectory scaling approach based on safety assessment,” IEEE Trans-
actions on Control Systems Technology, 2020.

[8] A. Levratti, G. Riggio, C. Fantuzzi, A. De Vuono, and C. Secchi,
“Tirebot: A collaborative robot for the tire workshop,” Robotics and
Computer-Integrated Manufacturing, vol. 57, pp. 129–137, 2019.

[9] J.-H. Chen and K.-T. Song, “Collision-free motion planning for
human-robot collaborative safety under cartesian constraint,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 1–7.

[10] F. Ferraguti, N. Preda, M. Bonfe, and C. Secchi, “Bilateral teleop-
eration of a dual arms surgical robot with passive virtual fixtures
generation,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2015, pp. 4223–4228.

[11] H.-C. Lin, C. Liu, Y. Fan, and M. Tomizuka, “Real-time collision
avoidance algorithm on industrial manipulators,” in 2017 IEEE Con-
ference on Control Technology and Applications (CCTA). IEEE, 2017,
pp. 1294–1299.

[12] F. Ferraguti, M. Bertuletti, C. T. Landi, M. Bonfè, C. Fantuzzi, and
C. Secchi, “A control barrier function approach for maximizing per-
formance while fulfilling to iso/ts 15066 regulations,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 5921–5928, 2020.

[13] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[14] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The international journal of robotics research, vol. 20, no. 5,
pp. 378–400, 2001.

[15] T. Kunz and M. Stilman, “Probabilistically complete kinodynamic
planning for robot manipulators with acceleration limits,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2014, pp. 3713–3719.

[16] A. D. Udai, A. A. Hayat, and S. K. Saha, “Parallel active/passive force
control of industrial robots with joint compliance,” in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2014, pp. 4511–4516.

[17] S. Moon, Y. Park, D. W. Ko, and I. H. Suh, “Multiple kinect
sensor fusion for human skeleton tracking using kalman filtering,”
International Journal of Advanced Robotic Systems, vol. 13, no. 2,
p. 65, 2016.

[18] J. Kofman, X. Wu, T. J. Luu, and S. Verma, “Teleoperation of a
robot manipulator using a vision-based human-robot interface,” IEEE
transactions on industrial electronics, vol. 52, no. 5, pp. 1206–1219,
2005.

[19] J. Fan, W. Xu, Y. Wu, and Y. Gong, “Human tracking using con-
volutional neural networks,” IEEE Transactions on Neural Networks,
vol. 21, no. 10, pp. 1610–1623, 2010.

[20] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[21] L. Jaillet and T. Siméon, “A prm-based motion planner for dynamically
changing environments,” in 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566),
vol. 2. IEEE, 2004, pp. 1606–1611.

[22] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
2009 IEEE International Conference on Robotics and Automation.
IEEE, 2009, pp. 489–494.

[23] F. Ferraguti, C. T. Landi, S. Costi, M. Bonfè, S. Farsoni, C. Secchi, and
C. Fantuzzi, “Safety barrier functions and multi-camera tracking for
human–robot shared environment,” Robotics and Autonomous Systems,
vol. 124, p. 103388, 2020.

[24] NaturalPoint. (2020) Optitrack - motion capture systems. [Online].
Available: https://www.optitrack.com/

[25] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE,
2000, pp. 995–1001.

[26] D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the barrier
to entry of complex robotic software: a moveit! case study,” arXiv
preprint arXiv:1404.3785, 2014.

[27] J. Mattingley and S. Boyd, “CVXGEN: A code generator for em-
bedded convex optimization,” Optimization and Engineering, vol. 12,
no. 1, pp. 1–27, 2012.

https://www.optitrack.com/

	I Introduction
	II Problem Statement
	III Speed and Separation Monitoring
	IV Safety Kinodynamic Architecture
	IV-A Trajectory Planning
	IV-B Trajectory Scaling

	V Experiments
	VI Conclusions
	References

