
A Safety Kinodynamic Planning Framework for Human-Robot
Collaboration

Andrea Pupa1, Mohammad Arrfou2, Gildo Andreoni2 and Cristian Secchi1

Abstract— In recent years, the safety standards have been
updated in order to regulate the new work environments,
characterized by the presence of humans and robots that
collaborate. The simple application of these standards translates
in great reduction of the robot speed. In order to ensure safety
for the human operator and allow the robot a more efficient
behavior, a two layer architecture is for trajectory planning and
scaling is presented. The first layer is responsible of planning
a collision-free trajectory, adapting it in real-time. The second
layer, instead, explicitly consider the safety standards to ensure
a safe robot velocity.

I. INTRODUCTION

The diffusion of collaborative robotics in the industrial
settings has created the need update the safety standards
in order to address the new collaborative scenarios [1].
Specifically, the ISO 10218-1 and the ISO 10218-2 [2], [3]
standards define four different collaborative modes: safety-
rated monitored stop (SMS), hand guiding (HG), speed and
separation monitoring (SSM) and power and force limiting
(PFL). Moreover, the technical specification ISO/TS 15066
[4] provides further information to assess the risk for each
collaboration mode. In industrial scenarios, the SSM is
typically implemented. In this collaborative mode the speed
of the robot is reduced according to the relative human-
robot velocity and position. However, this approach is overly
conservative, since the robot speed should not be limited if
its motion is directed away from the human.

Different approaches were presented in the literature to
deal with human safety and collision avoidance in a human-
robot collaboration (HRC) scenario. In [5] the authors
propose a real-time solution to evaluate the future human
occupancy and scale the robot speed accordingly, ensuring
safety. In [6] an optimization that proportional reduces the
robot speed while ensuring safety is presented.

Reducing the speed of the robot is not always the best
solution. Sometimes it might be better to change the pre-
planned path. In [7] the authors exploit the concept of static
and kinetostatic danger field on a mobile robot in order to
avoid collision. In [8] a strategy based on virtual fixture,
which combine attractive and repulsive potential field, in a
teleoperated environment has been implemented. However,

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 818087
(ROSSINI).

1 Andrea Pupa and Cristian Secchi are with the Department of Science
and Method of Engineering, University of Modena and Reggio Emilia, Italy.
E-mail: {andrea.pupa, cristian.secchi}@unimore.it

2 Mohammad Arrfou and Gildo Andreoni are with
Datalogic S.p.A., Italy. E-mail: {mohammad.arrfou,
gildo.andreoni}@datalogic.com

potential fields can easily cause the system to be stuck in
local minima.

For this reason, optimization-based algorithms have been
exploited to ensure safety by applying the minimum correc-
tion to the desired path. In [9] an optimization problem is
solved in real-time in order to force the robot to stay inside a
safe set, evaluating the variation of a safety index. In [10], the
authors propose the use of control barrier functions around
the robot body to maintain a collision-free trajectory while
fulfilling the ISO/TS 15066.

Solving an optimization algorithm could be computation-
ally challenging, especially in a real industrial scenario where
the number of obstacles to be considered is very high. In
[11], [12] the authors use kinodynamic rapidly-exploring
random tree (RRT) to plan collision free trajectory under
kinodynamic constraints. However, these solutions are not
suitable for constraints that change in real time based, as the
safety constraints.

In this paper we propose a two-layers framework for
trajectory planning and velocity scaling for HRC scenario
that ensures safety for the human operator by explicitly con-
sidering safety regulations. Given a desired configuration to
reach, a trajectory planner layer computes and adapts online
the trajectory that the robot has to follow. The trajectory
scaling layer scales the robot velocity ensuring safety for
the human operator. Moreover, in order to avoid drastic drops
of the robot velocity, the trajectory scaling can request for a
replan of a new trajectory, increasing the robot performances.

The main contributions of this paper are:

• A novel adaptive framework for trajectory planning and
scaling that takes into account the high dynamicity of
the environment, adapting in real-time the trajectory.

• A strategy for trajectory scaling that is computationally
cheap, i.e. suitable for real industrial application, and
that explicitly considers the kindoynamic safety con-
straint.

Further detailed on this work can be found in [13].

II. PROBLEM STATEMENT

We consider a HRC application where a robot manip-
ulator with n joints has to move from an initial config-
uration q(ti) = qi ∈ Rn to a desired final configuration
q(tf ) = qf ∈ Rn in order to execute a task. The trajectory
q(t) ∈ Rn that the robot has to perform can be decomposed
with a path-velocity decomposition:

q(t) = q(s(t)) (1)

mailto:andrea.pupa@unimore.it
mailto:cristian.secchi@unimore.it
mailto:mohammad.arrfou@datalogic.com.it
mailto:gildo.andreoni@datalogic.com


Fig. 1. The overall architecture. The blue blocks represent the two layers.
The yellow blocks, instead, symbolize the strategies implemented to provide
richer information to the layers. The red block represents the agent.
The black lines symbolize the data exchange, while the red one constitutes
the signal that request for a replan of a new trajectory.

where s is the curvilinear abscissa that parametrizes the
geometrical path q(s). The variation of s represents the time
law of the desired path (i.e. the velocity profile).

Differentiating (1) we obtain:

q̇(t) = q′(s)ṡ (2)

where q′(s) is the vector tangent to the desired path, while
ṡ constitutes the magnitude of the joint velocity.

The shared workspace is equipped with a monitoring
system that allows to track the human movements and
estimate the human speed.

In this work, we aim at designing a safety kinodynamic
architecture that:
• Computes a nominal trajectory that is always collision-

free, replanning a new trajectory when the actual tra-
jectory becomes infeasible.

• Starting from the nominal trajectory, scales the robot
velocity according to the safety standards.

III. SAFETY KINODYNAMIC ARCHITECTURE

The proposed dynamic trajectory planning and scaling
strategy can be represented by the architecture in Fig. 1,
where two main layers can be distinguished:

1) The trajectory planning layer. It is responsible of
generating the initial nominal trajectory that the robot
can execute at maximum speed. Subsequently, it con-
tinuously adapts this trajectory exploiting the human
tracking information.

2) The trajectory scaling layer. It is responsible of
scaling the robot velocity along the planned path,
fulfilling the safety standards.

Once the trajectory planning computes the initial nominal
trajectory, it sends it to the trajectory scaling and it remains
active until the robot reaches the desired final configuration
qf . The trajectory planning layers does not take into account
the safety regulation, i.e. it computes a trajectory that the
robot could ideally execute at maximum speed.

The trajectory scaling firstly applies a path-velocity de-
composition to the desired trajectory as shown in (1) and
(2). Subsequently, it computes online the optimal scaled

velocities in order to satisfy the constraint imposed by
ISO/TS 15066.

During the execution of the motion, mutual communi-
cation between the two layers is enabled. The trajectory
planning exploits the human tracking information and replans
a new trajectory when the previous one becomes infeasible,
as explained in Sec. III-A. The trajectory scaling immediately
parameterizes the new trajectory and starts following the
new path. At each iteration, it returns to the trajectory
planning the actual state of the trajectory. Moreover, when
the scaling factor decreases too much, the trajectory scaling
sends a signal to the trajectory planning requesting for a
new trajectory to be planned, as it is becoming inefficient,
see Sec. III-B.

A. Trajectory Planning

The role of this layer is to find a trajectory qd(t) for the
robot that is collision-free and that the robot can execute at
maximum speed. Moreover, the trajectory planning aims at
continuously maintaining a collision-free trajectory, adapting
it online when required.

The trajectory planning is implemented according to the
pseudo-code reported in Alg. 1.

Algorithm 1 TrajcetoryPlanning()
1: Require: qi, qf , n
2: qd(·)← plan(qi, qf )
3: send(qd(·))
4: qc ← qi
5: while qc 6= qf do
6: h← horizon(qc, n)
7: for i = 1 : n do
8: if not feasible(h(i)) then
9: qd(·)← replan(qd(·), qd(h(i− 1)), qf )

10: break
11: end if
12: end for
13: if β then
14: qd(·)← replan(qd(·), qc, qf )
15: end if
16: update qc()
17: end while

The trajectory planning needs as input the initial and the
final configuration, respectively qi and qf , and the length of
the horizon trajectory that will be checked n (Line 1). It
immediately plans the maximum speed trajectory qd(·) that
the robot could perform, sending it to the trajectory scaling
layer, and it initialize the current state qc as qi (Lines 2-
4). From this point the algorithm starts to loop until the
entire trajectory has been executed (Line 5). In the loop, the
dynamic planner first creates the horizon h, which represents
the set of the future configuration that are analyzed to
check the feasibility of the trajectory (Lines 6-8). In case an
infeasible configuration is found a new feasible trajectory is
planned through the function replan (Line 9). Subsequently,
the dynamic planning algorithm reads if the trajectory scaling



layer has requested to replan a new trajectory, as described
in Sec. III-B. If that is the case, a new trajectory starting
from the actual configuration is computed (Line 14). Lastly,
the actual configuration is updated exploiting the information
coming from the trajectory scaling in (6) (Line 16).

The replan algorithm is presented in Alg. 2.

Algorithm 2 replan()
1: Require: qd(·), qrp, qf
2: qnew(·)← plan(qrp, qf )
3: qd(·)←merge(qd(·), qnew(·))
4: send(qd(·))
5: return(qd(·))

The algorithm takes as input the actual planned trajectory
qd(·), the starting configuration of the new trajectory qrp and
the final desired configuration qf (Line 1). It plans a new
trajectory qnew(·) that goes from the starting configuration
qrp to the desired goal qf and it merges the new trajectory
with the old one (Lines 2-3). Lastly, the merged trajectory
qd(·) is sent to the trajectory scaling and returned to the
dynamic planner (Lines 4-5).

B. Trajectory Scaling

Starting from the output of the dynamic planner, the goal
of the trajectory scaling is to regulate the robot velocity with-
out violating the safety standards. The trajectory scaling aims
at scaling only the magnitude of the velocity ṡ, following
exactly the collision-free path planned.

This is achieved in two steps. Firstly, by applying the path-
velocity decomposition as shown in (1)–(2). Secondly, by
solving the following optimization problem:

min− α

subject to

Jri(q)q
′
d(s)ṡα ≤ Vmax ∀i ∈ {1, . . . , n}

q̇min ≤ q′d(s)ṡα ≤ q̇max

q̈min ≤ q′d(s)ṡα−q̇
Tr

≤ q̈max

0 ≤ α ≤ 1

(3)

α ∈
[
0, 1
]

is the optimization variable and represents the
scaling factor. Jri(q) ∈ R1×n is a modified jacobian that
takes into account only the scalar velocity towards the
human operator of the i-th link. This modified version of
the jacobian is required as the velocity constraint imposed
by the ISO/TS 15066 limits only the velocity that reduce the
human-robot distance. Vmax is the velocity limit imposed
by the ISO/TS 15066. q̇min ∈ Rn and q̇max ∈ Rn are
the joint velocity lower bounds and the joint velocity upper
bounds, respectively. While q̈min ∈ Rn and q̈max ∈ Rn are
the acceleration limits. q̇ ∈ Rn is the actual robot velocity
and Tr is the robot execution time.

The modified jacobian Jri(q) is expressed as:

Jri(q) = ~nTi
[
Ji(q) 0̄

]
(4)

where ~ni = {nxi , nyi , nzi , 0, 0, 0} is the versor representing
the direction that goes from the i-th robot link to the human.
Ji(q) ∈ R6×i is the i-th jacobian, i.e. the jacobian matrix
that relates the firsts i joint velocity to the linear and angular
velocity of the i-th link, and 0̄ ∈ R6×(n−i) is a matrix with
all zero elements.

The optimization problem (3) is a convex problem and
computationally cheap. Moreover the problem has always
a feasible solution. When the human operator is very far
from the robot, the robot is allowed to move at the desired
speed, i.e. α = 1 that is the maximum speed as seen in
Sec. III-A. When the human approaches the robot, the safety
standards require to decrease the velocity until, in the worst
case, stopping the robot. This is guaranteed by the solution
α = 0.

The output of the trajectory scaling is then used to send
the desired velocity to the robot:

q̇ = q′d(s)ṡα (5)

while the new robot configuration that is sent to the dynamic
planner (see Alg.1, Line 16) will be:

qc = qc + q′d(s)ṡαTr (6)

However, greatly reduce the robot velocity is a very
conservative strategy and it strictly decreases the overall
efficiency. Sometimes it could be more convenient for the
robot to move away from the human and execute another
trajectory. For this reason it has been implemented a step
signal that requests to the dynamic planner the replan of
new trajectory:

β =

{
1 α ≤ αmin
0 otherwise

(7)

where αmin is a predefined threshold and represents the
lower desired bound for the scaling factor.

When β is high a replan request is sent to the trajectory
planning and a new trajectory is planned (see Alg. 1,
Line 13).

IV. EXPERIMENTS

The proposed two-layers framework has been experimen-
tally validated on a Pilz PRBT, a 6-DoF manipulator for
industrial application. We decided to exploit six OptiTrack
Primex cameras to track the movements of the human right
arm. A complete setup of the experiments is shown in Fig. 2.
All the software components were developed using ROS
Melodic Morenia. The dynamic planner layer is based on
the RRT-Connect algorithm, while the trajectory scaling layer
exploits the C code generated by CVXGEN. For simplicity,
the modified jacobian Jri is applied only to the end-effector
and the versor ~ni is the versor of minimum distance between
the i− th robot link and the human operator arm.

In the experiment the robot has to go
continually from the start configuration



Fig. 2. Setup of the experiments. The Pilz PRBT manipulator, three of
the six OptiTrack Primex cameras and a wooden rod with the OptiTrack
markers to track the right arm of the human operator (red circle).

(a) Nominal Positions (b) Real Positions

Fig. 3. First part of the experiment. Since no scaling is applied, the real
path is equal to the nominal one.

qs = {1.57,−0.4, 1.17, 0.0, 1.57, 0.0} to the final
configuration qg = {−1.57,−0.4, 1.17, 0.0, 1.57, 0.0},
and vice versa. A complete video of the demonstration is
attached1. Initially, the human operator is very far from
the robot and the robot is allowed to move at maximum
speed, following the nominal planned trajectory as shown
in Fig. 3. Subsequently, the human operator approaches
the robot causing the scaling of the trajectory, as shown
in Fig. 4. This is due to the fact that the maximum speed
allowed towards the human operator decreases. It is worth
noting that the robot slows down only in the first part of
the trajectory, i.e. from t = 1.1 sec to t = 1.95 sec. This is
because the robot is going towards the human operator. In
the second part, i.e. when it moves away, it goes at higher
speed, restoring the nominal behavior.

In the next part of the experiment the human operator
hinders the robot and the dynamic planner layer takes care of
planning a new trajectory. In the last part, the human operator
goes very close to the robot, causing a drop of the scaling
factor. Consequently, the trajectory scaling layer requests a
replan of a more efficient trajectory. The replanning strategy
is successful and the robot is free to restore its behavior,
completing the trajectory.

V. CONCLUSIONS

In this paper we propose a two-layers framework for tra-
jectory planning and velocity scaling. Taking into account the
human motion, the first layer, i.e. the dynamic planner layer,
continuously checks if the trajectory becomes infeasible and
and reacts accordingly. The second layer, i.e. the trajectory
scaling layer, explicitly considers the safety standards and

1https://youtu.be/M3FnC_B1XlM

(a) Nominal Positions (b) Real Positions

Fig. 4. Second part of the experiment. As a consequence of the scaling,
the robot requires more time to complete the trajectory.

scales the robot velocity in order to ensure safety. Moreover,
when the scaling factor decreases too much, the trajectory
scaling sends a signal to the dynamic planner requesting for
a replanning of a new trajectory.

Future work aims to exploit the model predictive control
approach to generate smoother speed profiles. Moreover,
considering a single direction from each robot link to the
human operator can be quite unreliable from a safety point
of view. For this reason a strategy that considers multiple
directions could be implemented.

REFERENCES

[1] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot
collaboration in industrial settings: Safety, intuitive interfaces and
applications,” Mechatronics, vol. 55, pp. 248–266, 2018.

[2] “Robots and Robotic Devices–Safety Requirements for Industrial
Robots–Part 1: Robots,” International Organization for Standardiza-
tion, Geneva, CH, Standard, Jul. 2011.

[3] “Robots and Robotic Devices–Safety Requirements for Industrial
Robots–Part 2: Robot systems and integration,” International Orga-
nization for Standardization, Geneva, CH, Standard, Jul. 2011.

[4] “Robots and robotic devices–Collaborative robots,” International Or-
ganization for Standardization, Geneva, CH, Technical Specification,
Feb. 2016.

[5] M. Ragaglia, A. M. Zanchettin, and P. Rocco, “Safety-aware trajec-
tory scaling for human-robot collaboration with prediction of human
occupancy,” in 2015 International Conference on Advanced Robotics
(ICAR). IEEE, 2015, pp. 85–90.

[6] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias,
“Safety in human-robot collaborative manufacturing environments:
Metrics and control,” IEEE Transactions on Automation Science and
Engineering, vol. 13, no. 2, pp. 882–893, 2015.

[7] A. Levratti, G. Riggio, C. Fantuzzi, A. De Vuono, and C. Secchi,
“Tirebot: A collaborative robot for the tire workshop,” Robotics and
Computer-Integrated Manufacturing, vol. 57, pp. 129–137, 2019.

[8] F. Ferraguti, N. Preda, M. Bonfe, and C. Secchi, “Bilateral teleop-
eration of a dual arms surgical robot with passive virtual fixtures
generation,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2015, pp. 4223–4228.

[9] H.-C. Lin, C. Liu, Y. Fan, and M. Tomizuka, “Real-time collision
avoidance algorithm on industrial manipulators,” in 2017 IEEE Con-
ference on Control Technology and Applications (CCTA). IEEE, 2017,
pp. 1294–1299.

[10] F. Ferraguti, M. Bertuletti, C. T. Landi, M. Bonfè, C. Fantuzzi, and
C. Secchi, “A control barrier function approach for maximizing per-
formance while fulfilling to iso/ts 15066 regulations,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 5921–5928, 2020.

[11] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The international journal of robotics research, vol. 20, no. 5,
pp. 378–400, 2001.

[12] T. Kunz and M. Stilman, “Probabilistically complete kinodynamic
planning for robot manipulators with acceleration limits,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2014, pp. 3713–3719.

[13] A. Pupa, M. Arrfou, G. Andreoni, and C. Secchi, “A safety-aware kin-
odynamic architecture for human-robot collaboration,” IEEE Robotics
and Automation Letters, vol. 6, no. 3, pp. 4465–4471, 2021.

https://youtu.be/M3FnC_B1XlM

	Introduction
	Problem Statement
	Safety Kinodynamic Architecture
	Trajectory Planning
	Trajectory Scaling

	Experiments
	Conclusions
	References

